
Appears inThe Fourth Annual Workshop on Duplicating, Deconstructing, and Debunking (WDDD), June 2005. 1

The Importance of Heat-Sink Modeling for DTM and
a Correction to “Predictive DTM for Multimedia Application s” �

Jayanth Srinivasan and Sarita V. Adve
University of Illinois at Urbana Champaign

Department of Computer Sciencefsrinivsn,sadveg@cs.uiuc.edu

Abstract

It is anticipated that in the future, increasing power den-
sities and resultant temperatures will often be the dominant
limit to processor performance and a significant component
of cost. Dynamic thermal management (DTM) techniques
address this issue by allowing the thermal solution to be
designed for a temperature less than the peak. Evaluating
DTM and other processor thermal properties requires re-
liable tools for processor thermal modeling. In particular,
the processor heat-sink model plays a crucial role, but much
prior work in DTM, including our own, is based on simplis-
tic assumptions of heat-sink behavior. Using more realistic
heat sink simulation, this paper corrects our previous work
and underscores the need for more accurate heat sink sim-
ulation for future thermal work.

Specifically, we re-examine the DTM results in our paper,
”Predictive Dynamic Thermal Management for Multimedia
Applications” [12]. We show that although the predictive
DTM algorithms discussed in that paper are still effective,
incorrect heat sink simulation resulted in erroneous conclu-
sions on the effectiveness of global vs. local response mech-
anisms. We also describe how for reactive DTM algorithms
(which constitute all of the prior DTM work), heat sink sim-
ulation is more complex than previously discussed.

1 Introduction

Temperature is emerging as a significant issue in mod-
ern microprocessor design. It is anticipated that power
consumption and consequent thermal considerations will
be the dominant limit to processor performance in many
future systems. With increasing processor power densi-
ties, cooling solution costs are increasing rapidly, making
cost-effective deployment of future computer systems diffi-
cult [1].�This work is supported in part by an equipment donation from AMD, a
gift from Intel Corp., and the National Science Foundation under Grant No.
CCR-0209198, CCR-0205638, EIA-0224453, and CCR-0313286.Jayanth
Srinivasan is supported by an IBM graduate fellowship.

In order to combat rising cooling solution costs, re-
searchers have proposeddynamic thermal management
(DTM) [3, 5, 10, 11, 12]. DTM refers to a range of pos-
sible hardware strategies to control a chip’s operating tem-
perature at runtime. Traditionally, the cooling solution for
a processor is designed to maintain a safe operating tem-
perature even when the chip is dissipating the maximum
power possible for a sustained period of time, and therefore
at its highest (or peak) temperature. However, this worst
case scenario is unlikely during normal processor operation
and such expensive packaging is overkill. DTM provides a
more cost-effective solution by allowing the thermal solu-
tion to be designed for a temperature that is less than the
peak. In the (hopefully) rare case when the chip approaches
the packaging temperature limit, DTM invokes a hardware
response to bring down the temperature, typically by reduc-
ing system performance. Possible response mechanisms in-
clude a variety of architectural adaptations (e.g., fetch tog-
gling or throttling) and dynamic voltage scaling (DVS).

In order to evaluate DTM techniques, accurate and re-
liable simulation tools for processor thermal modeling are
required. In particular, since the processor heat-sink tem-
perature affects the temperature of every structure on chip,
the thermal properties of the heat-sink play a crucial role
in processor thermal evaluations. However, much of the
prior microarchitectural work on DTM, including our own,
is based on simplistic assumptions of heat-sink behavior.

This paper makes two contributions. First, it proposes
an iterative method for improved heat sink modeling when
simulating reactive DTM algorithms. Second, it uses up-
dated heat-sink models to re-evaluate the DTM results in
our paper, “Predictive Dynamic Thermal Management for
Multimedia Applications” [12]. We show that although the
predictive DTM algorithms in that work are still effective,
some of the conclusions drawn are erroneous due to incor-
rect heat-sink simulation. Thus, our results highlight theim-
portance of appropriate heat-sink modeling for future ther-
mal studies.

1

1.1 Modeling the Heat-Sink

Heat-sink temperature simulation is an essential part of
any processor thermal simulation. As discussed in [11], the
large thermal time constant of the heat-sink makes its tem-
perature simulation difficult. Due to its large thermal ca-
pacity, the time constant of the heat-sink (which dictates the
rate at which its temperature changes) tends to be of the or-
der of 10s of seconds. This time granularity is much higher
than the time of most architectural simulations; therefore,
most simulations will not run long enough for the heat-sink
to reach its steady state temperature on its own. Instead, it
is essential that the heat-sink temperature beinitialized to
the correct valuebefore the start of the thermal simulation.

Some previous thermal models (e.g., [10]), ignored the
processor heat-sink temperature. Instead, anarbitrary con-
stant heat-sink temperature is assumed for all simulations.
This is clearly inaccurate. More recently, Skadron et al.
proposed a more advanced thermal model, HotSpot [11],
which is recognized as state-of-the-art among current pub-
licly available models. HotSpot addresses many of the
shortcomings in previous thermal simulators and also mod-
els the thermal properties of the heat-sink. However, even
using Hotpot, it is essential that the heat-sink temperature be
initialized appropriately for accurate thermal simulations.

The temperature of the processor heat-sink depends on
the average power consumption of the processor calculated
over periods smaller than the heat-sink’s thermal time con-
stant. Applications and architectures with higher power
consumption will result in a hotter heat-sink. For an accu-
rate thermal simulation, the initial temperature of the heat-
sink, which has to be set before the run, should be calculated
using the average processor power consumption, which can
only be determined after the run. The authors of [11] ad-
dress this issue for non-adaptive processors by running ev-
ery simulation twice – the first run is used to calculate the
average total power consumption of the chip, from which
the steady-state temperature of the heat-sink is calculated.
The heat-sink is then initialized with this value for the sec-
ond run, in which temperature is modeled accurately. This
method is valid in thermal simulations which see no run-
time processor adaptation. As discussed next, DTM algo-
rithms which use run-time processor adaptation are more
difficult to simulate.

Most work in DTM for processors isreactive– the pro-
cessor typically runs at full performance; only when the
temperature gets too close to the packaging limit, a response
to curtail performance (and thereby reduce temperature) is
initiated. Reactive DTM algorithms add additional com-
plexity to heat-sink modeling. There exists a cyclical depen-
dence between the response of a reactive DTM algorithm
and the temperature of the heat-sink. The response of a re-
active DTM algorithm depends on the temperature of the
hottest structure on chip which depends on the temperature

of the heat-sink. At the same time, the DTM response will
change the average processor power consumption, which
will change the steady state temperature of the heat sink.
Hence, since the average power consumption changes dur-
ing the reactive DTM simulation, the calculated heat-sink
temperature at the end of the simulation will be different
from the initialization temperature, resulting in an inaccu-
rate simulation. Note that this problem does not arise in
situations where there is no adaptation as the average power
consumption of the processor does not change.

To account for this effect, we propose that reactive DTM
algorithms be simulated over multiple iterations. At the be-
ginning of each iteration, the heat-sink temperature is ini-
tialized based on the average processor power consumption
in the previous iteration. Over multiple iterations, the heat-
sink temperature and average power consumption due to the
DTM responses will converge to commensurate levels, re-
sulting in an accurate simulation. Most previous work on
DTM algorithms is either based on simplistic heat-sink as-
sumptions like arbitrary constant temperatures or does not
describe the heat-sink temperature initialization methodol-
ogy [4, 9, 10, 11].

1.2 Re-evaluation of DTM Algorithms in [12]
We illustrate the importance of correct heat-sink mod-

eling by re-examining the DTM results in our paper, “Pre-
dictive Dynamic Thermal Management for Multimedia Ap-
plications” [12]. The paper exploited certain properties of
multimedia applications to propose new performance effec-
tive DTM control algorithms for such applications.

As mentioned, most previous work on DTM proposes
reactive algorithms. Such schemes suffer from at least two
problems: (1) Given the limited time to respond to a thermal
emergency in a reactive scheme, only low time overhead
mechanisms can be applied. This precludes the efficient use
of mechanisms like dynamic voltage scaling which poten-
tially have large thermal benefits but high invocation time
overheads. (2) Engaging the appropriate reactive response
at the appropriate time requires significant prior tuning of
the system to determine the appropriate temperature trigger
for an appropriate response for a given application.

In response to the above problems, [12] proposed new
DTM control algorithms for long running multimedia ap-
plications that took apredictive approach, by exploiting
characteristics of multimedia applications. We evaluated
the predictive algorithms using the first thermal model pro-
posed by Skadron et al. [10]. As mentioned, that thermal
model assumes an arbitrary constant heat-sink temperature
for all simulations. Based on an evaluation of nine mul-
timedia applications, [12] concluded that predictive DTM
algorithms were the most performance-effective, and that
DTM response mechanisms targeted at specific “hot-spots”
on chip were more effective than global DTM response
mechanisms.

2

CB

RB
CA

RA

T A,B

T ambient

A (P)Α B (P)Β

T
CH

RH

H

Figure 1. Equivalent thermal circuit for simple processor
with two structures.

In this paper, we re-evaluate the DTM algorithms
from [12] using the HotSpot thermal model [11]. We also
use the iterative approach discussed in the previous section
to properly evaluate reactive DTM algorithms. Predictive
DTM algorithms do not require iterative simulation as the
DTM response is invoked only once at the beginning of the
simulation and there is no run-time adaptation. Two runs are
sufficient for predictive algorithms – the first run is used to
calculate the average power consumption of the chip which
is used to initialize the second run with the correct heat-sink
temperature. Our revised results in this paper show that
although the predictive DTM algorithms studied here are
still the most performance effective, global DTM response
mechanisms are more effective than techniques targeted ex-
clusively at hot-spots on chip. This difference in results
arises almost completely from the improved modeling of
heat-sink behavior, highlighting the role of the heat-sinkin
processor thermal evaluations.

2 Analytical Heat-Sink Model
For each structure of a processor, the power dissipated

translates into a temperature increase with a certain time
lag. This is equivalent to a conventional RC electric
circuit, where the structure has a certain thermal resis-
tanceR (Kelvin/Watt), and a certain thermal capacitanceC (Joule/Kelvin).

Consider a simple processor with two structures, A and
B, and a heat sink. The equivalent thermal circuit for the
processor is shown in Figure 1. For the sake of simplicity,
in this section, we ignore tangential resistances and capac-
itances across structures A and B in Figure 1. The steady
state temperature of structure A,TA, is given byTA = TH +RA � PA (1)

whereTH is the temperature of the surface of the heat-sink,PA is the power being dissipated by structure A, andRA
is the thermal resistance of structure A. The steady state
temperature of structure B can be calculated similarly. The
thermal RC time constant (R�C) dictates the rate at which
the temperatures of the structures change. Structures with

higher RC time constants take longer to change tempera-
ture.

In a similar fashion, the steady state temperature of the
heat-sink depends on the total power consumption of the
processor,PA + PB . Hence, the temperature of the surface
of the heat-sink,TH is given byTH = Tambient + (PA + PB)�RH (2)

whereTambient is ambient room temperature and is a con-
stant, andRH is the thermal resistance of the heat-sink.
If CH is the thermal capacitance of the heat-sink, the rate
at which the heat-sink temperature changes depends onRH � CH .

The time constants associated with structures on chip are
much smaller than the time constant of the heat sink. As a
result, as recommended by [10], [12] assumed that the dy-
namic aspects of the heat sink for short time intervals can
be ignored. We only calculated dynamic variations in tem-
perature of individual blocks assuming a constant arbitrary
value forTH . This can lead to incorrect temperature esti-
mates. For example, if the power consumption of structure
A increases fromPA1 to PA2 , the increase in steady state
temperature of A,�TA is�TA = (PA2 � PA1)� RA + (PA2 � PA1)�RH (3)

If a constant heat-sink temperature is assumed, the
steady state temperature of structure A would be incorrectly
estimated by(PA2 � PA1) � RH . This error increases if
multiple structures on chip change power consumption. In
addition to structure A, if the power consumption of struc-
ture B increases fromPB1 to PB2 , the increase in steady
state temperature of A is�TA = (PA2�PA1)�RA+((PA2+PB2)�(PA1+PB1))�RH

(4)
Hence, the increase in power consumption ofbothA and

B affect the temperature of structure A due to the effect of
the heat-sink. This is of particular importance when ex-
amining techniques which target individual “hot-spots” on
chip versus global techniques which target every structure
on chip. Hence, even if a global technique decreases the
power of a structure less than a local structure-specific tech-
nique, the global technique might be more effective in re-
ducing the temperature of the structure due to the impact of
the heat-sink.

2.1 Effect of DTM on Heat-Sink Temperature

As discussed in Section 1, there exists a cyclical depen-
dence between the response of a reactive DTM algorithm
and the temperature of the heat-sink. As seen in Equation 1,
the temperature of the hottest structure on chip depends on
the temperature of the heat-sink,TH . At the same time, as

3

seen in Equation 2, the temperature of the heat-sink depends
on the power consumption of every structure on chip. If the
DTM response reduces average processor power,TH will
decrease, and if the DTM response increases average pro-
cessor power,TH will increase. Due to the large thermal
time constant of the heat-sink, this change inTH will not be
seen during the simulation. In other words, in the case of
Figure 1, the average power consumption of A and B,PA
andPB , while running the reactive DTM algorithm will not
satisfy Equation 2 as the heat-sink temperature,TH will be
incorrect.

To account for this effect, we propose that reactive DTM
algorithms be simulated over multiple iterations. At the be-
ginning of each iteration, the heat-sink temperature is ini-
tialized based on the average total processor power con-
sumption in the previous iteration. Over multiple iterations,
the heat-sink temperature and DTM responses will converge
to commensurate levels, resulting in an accurate simulation.
Hence, after multiple iterations, values ofPA, PB , andTH
will be arrived at that satisfy Equation 2. The DTM simula-
tion at this point will provide accurate results.

When simulating predictive DTM algorithms or any non-
adaptive processor, this problem does not arise. As ex-
plained, two iterations are sufficient for accurate thermal
simulation in such cases.

3 DTM Algorithms Studied

In this section, we briefly summarize the DTM algo-
rithms evaluated in [12]. We re-evaluate all of these algo-
rithms in this paper.

3.1 Reactive DTM Algorithms

We evaluated two reactive DTM algorithms in [12],R-
ToggleandR-IwFu .

R-Toggle: R-Toggle uses fetch-toggling as its response
mechanism. Fetch-toggling reduces the number of instruc-
tions in the processor pipeline by reducing the rate at which
instructions are fetched. Hence, with fetch-toggling, forev-
eryN processor cycles, instructions are fetched in onlyM
of the cycles, whereM < N . Once the trigger temperature
is crossed, the toggling rate is varied linearly from no tog-
gling (M = N or normal fetch) to full toggling (M = 0 or
no fetch) depending on the proximity to the thermal limit.

R-IwFu: R-IwFu targets the register file which was
found to be the hottest structure on chip for all our appli-
cations. Specifically, R-IwFu deactivates functional units,
which results in a reduced number of active register file
ports, reducing register file power. R-IwFu also resizes the
instruction window. In the reactive scheme, this adaptation
has an indirect effect on the register file. The reason we
chose this response was to contrast the reactive algorithms
with our proposed predictive algorithms where instruction
window adaptation has a direct impact on the register file.

(4) If f > max. supported freq, then f = max. supported freq. max|A

(at a common safe profiling voltage/frequency, V / f)

.

. .

α
A A

For each frame type,

For each architecture, A:

(1) Measure IPC and TA max|A,fprof

(5) Performance IPC X f

profprof

max|A

max|A

Choose architecture, A, with highest performance, running at f .

max|A

T limit

Tmax|A,fprof
2

profV fprof

V
2

fmax|A max|A
=

(2) For the thermal limit, T , find the maximum safe

 frequency, f , using:max|A

limit

(3)If f < min. supported freq., then discard architecture A.max|A

Figure 2. The predictive algorithm for choosing the best
performing thermally safe configuration.

When the processor temperature exceeds the trigger temper-
ature, the instruction window size and the number of func-
tional units are reduced by a fixed amount at each temper-
ature sample. Once the temperature goes below the trigger,
the instruction window and functional units are fully acti-
vated again.

For the fairest comparison, the trigger temperatures cho-
sen for the reactive algorithms for each application for each
thermal limit were manually determined to ensure the best
possible performance which was also thermally safe.

3.2 Predictive DTM Algorithms

Multimedia applications typically process discrete units
of data called frames. Our predictive algorithms use two
prior results for such applications [6]: (1) For a given ap-
plication, architecture, and frequency, average IPC and av-
erage power consumption of a frame are almost constant
among all frames of the same type. This is because the na-
ture of the work is roughly the same for all frames of a given
type. (2) IPC of a frame is almost independent of clock fre-
quency, since little time is spent in memory stalls. From
these observations, since the IPC and power dissipation of a
frame are constant, and the nature of the dominant compu-
tation is constant, we extrapolate and confirm that the max-
imum temperatures attained during different frames of the
same type will be similar.

The goal of our predictive algorithm, summarized in Fig-
ure 2, is to determine the highest performing, thermally
safe architectural configuration. The algorithm starts with
the application being profiled at a frequency,fprof . For
each architectural configuration, A, the algorithm measuresIPCA (the IPC of A), and maximum temperature reached
(TmaxjA;fprof) by any structure on chip for an appropriate
number of frames of each type. Next, the algorithm de-
termines the maximum frequency,fmaxjA at which each
profiled architecture is still thermally safe. This can be de-
termined using the maximum temperature reached during
profiling TmaxjA;fprof , the profiling frequency,fprof , and

4

profiling voltage,Vprof , as follows:TlimitTmaxjA;fprof = V 2maxjAfmaxjAV 2proffprof (5)

whereVmaxjA is the voltage required to supportfmaxjA,
andTlimit is the chip’s thermal limit (i.e., maximum tem-
perature than any structure is allowed to reach).

The performance of a given hardware configuration is
proportional to the product of its frequency and IPC. Since
our multimedia applications spend little time in memory
stalls, IPC remains almost constant across frequencies [6]
obviating the need to scale IPC with frequency. Hence,
the maximum thermally safe performance of an architecture
is proportional tofmaxjA � IPCA. The algorithm there-
fore chooses the architecture, A, with the highestfmaxjA �IPCA product. This architecture running atfmaxjA is pre-
dicted to be the fastest thermally safe hardware configura-
tion and is used in the rest of the run.

The predictive algorithms can exploit toggling, structural
adaptation, and DVS. To isolate the benefits of each, we
evaluate four versions:P-Toggle only performs toggling
and does not support any other form of architectural adap-
tation or DVS.P-IwFu performs instruction window and
functional unit adaptation and does not support DVS.P-
DVS adapts the voltage and frequency, but not the architec-
ture. In order to include all the algorithms evaluated in [12],
we also studyP-IwFuDVS which combines the benefit of
P-IwFu and P-DVS. One important difference in the effect
of instruction window adaptation as invoked in the predic-
tive algorithm compared to the reactive algorithm is that the
former is also able to change the number of active physical
registers with instruction window size. A smaller instruc-
tion window requires fewer physical registers for renaming,
resulting in lower power consumption.

4 Methodology

4.1 Architectures

Our experimental methodology is very similar to the one
used in [12]. The base non-adaptive processor studied is
similar to the MIPS R10000 and is summarized in Table 1.
We also study a version of the base processor with support
for dynamic voltage/frequency scaling (DVS). The voltages
used for each frequency were extrapolated from the infor-
mation available for Intel’s XScale (StrongArm-2) proces-
sor [8]. We allowed the frequency to range from 100 MHz
(at 0.7 V) to 2.2 GHz (at 1.75 V).

We study processors capable of adapting their instruc-
tion window size and/or the number of active functional
units and issue width. The instruction window is broken
into segments of 8 entries each, and at least two segments

Technology ParametersVdd 1.75 V
Processor frequency 2.2 GHz

Base Processor Parameters
Fetch/retire rate 8 per cycle
Functional units 6 Int, 4 FP, 2 Add. gen.
Integer FU latencies 1/7/12 add/mult./div.
FP FU latencies 4 default, 12 div. (not pipelined)
Instruction window 128 entries
(reorder buffer) size
Register file size 192 integer and 192 FP
Memory queue size 32 entries
Branch prediction 2KB bimodal agree, 32 entry RAS

Base Memory Hierarchy Parameters
L1 (Data) 64KB, 2-way associative,

64B line, 2 ports, 12 MSHRs
L1 (Instr) 32KB, 2-way associative
L2 (Unified) 1MB, 4-way associative,

64B line, 1 port, 12 MSHRs
Main Memory 16B/cycle, 4-way interleaved

Base Contentionless Memory Latencies
L1 (Data) hit time (on-chip) 2 cycles
L2 hit time (off-chip) 20 cycles
Main memory (off-chip) 102 cycles

Table 1. Base non-adaptive processor.

must always be active. As mentioned earlier, for the pre-
dictive algorithm, we resize the register file based on the
instruction window size. For functional units, we require
that at least one integer ALU must always be active. The
issue width of the processor is equal to the sum of all ac-
tive functional units and hence changes when we change the
number of active functional units. Since we adapt the issue
width of the processor with functional unit adaptation, we
power down the selection logic corresponding to the func-
tional units that are powered down. Also, when a functional
unit is powered down, the corresponding part of the result
bus, the wake-up ports to the instruction window, and write
ports to the register file are also powered down. We model
a delay of 5 cycles to power up an inactive functional unit
or instruction window segment. When a functional unit or
instruction window segment is to be powered down, the sys-
tem must wait for the units to complete their current tasks
before shutting them down. As a result, we do not charge
an extra delay for powering down the functional units and
instruction window.

For P-IwFu and P-IwFuDVS, we profiled all possible
combinations of the following configurations (54 total): in-
struction window size2 f16,32,48,64,96,128g, number of
ALUs 2 f6,4,2g, and number of FPUs2 f4,2,1g. P-Toggle
profiles twenty architectures, each with a different fetch
level, ranging from fetching once every 20 cycles to no tog-
gle (fetch every cycle).

System temperature is sampled every 1�sec. The reac-
tive adaptations are also invoked at this granularity. For R-
Toggle, we allow the toggling rate to vary over a range of
20 levels, ranging from no toggle (fetch every cycle) to full
toggle (no fetch). In R-IwFu, the instruction window size
is varied in steps of 16 entries. The number of ALUs and

5

App. Type No. Frames Cycles per No. Frames
Profiled Frame Executed

GSMenc 10 8.065+E4 100
GSMdec Speech 10 2.002+E4 100
G728enc codec 10 9.498+E3 100
G728dec 10 7.415+E3 100
H263enc Video 1 1.544+E7 1
H263dec codec 1 3.431+E5 5
MPGenc 1 3.405+E7 1
MPGdec 1 1.313+E6 1
MP3dec Audio 1 6.421+E5 10

Table 2. Workload description. For MPG, only B frames
are evaluated.

FPUs is varied in steps of a single functional unit.

4.2 Workload description

Table 2 summarizes the nine applications and inputs used
in this paper. For each application, it gives: (1) the aver-
age number of execution cycles per frame, (2) the number
of frames profiled for each architectural configuration and
frame type (the total time profiled should be much larger
than the thermal RC constant for thermal stability), (3) num-
ber of frames executed after profiling for evaluating the per-
formance degradation of the DTM schemes.

We do not study multiprogrammed workloads in this pa-
per. Simulating an application in a multiprogrammed en-
vironment requires knowledge of the effect of the previous
application on heat-sink temperature. In real systems, this
is handled in a natural way using sensors. (The predictive
algorithms would choose an architecture configuration that
would be safe given the current heat sink temperature.)

4.3 Simulation Methodology

4.3.1 Simulator

We use the RSIM simulator [7] for performance evaluation.
We use the Wattch tool [2] integrated with RSIM for power
measurement. Wattch assumes extensive clock gating for all
the components of the processor with 10% of its maximum
power charged to a component when it is not accessed in a
given cycle.

As explained earlier, we use the HotSpot tool [11]
for temperature measurement. The chip floorplan fed to
HotSpot resembles the MIPS R10000 floorplan (without L2
cache). The areas of the different structures modeled can
be found in [12]. HotSpot represents the state-of-the-art in
publicly available thermal simulators and accounts for tan-
gential resistances between structures on chip. In addition,
the impact of total processor power on the heat-sink tem-
perature is also accounted for. Temperature measurements
are performed at the granularity of 1� second.

As explained in Section 2, care has to be taken to initial-
ize HotSpot with the appropriate heat-sink temperature, de-
pending on the nature of the thermal simulation. Predictive
DTM simulations require two iterations for accurate results.
Reactive DTM simulations require multiple iterations. The
heat-sink temperature at the first iteration for every thermal
limit is initialized to 40oC. Each subsequent iteration is
initialized with a heat-sink temperature calculated from the
power-consumption of the processor in the previous itera-
tion. This process is continued until the difference in heat-
sink temperature across adjacent iterations is less than 0.2
degrees.

4.3.2 Thermal limits

We define the thermal limit as the maximum allowed tem-
perature of the chip. The thermal control algorithms dis-
cussed in this paper all strive to maintain the processor tem-
perature within this thermal limit. If the processor crosses
the thermal limit, it enters thermal crisis. Since it is desir-
able to design processors to work with a variety of thermal
solutions, we model multiple thermal limits ranging from55oC to 105oC.

4.4 Metrics

We use performance as the main metric of comparison.
Our algorithms seek to minimize the performance impact
while maintaining safe thermal levels. Additionally, the
thermal control algorithm should strive to avoid or at least
minimize the cycles spent in crisis. As a result, a crucial
metric when evaluating thermal control algorithms is cycles
spent in crisis. In order to limit the design space evalu-
ated,we manually tuned the trigger temperature of different
mechanisms to ensure that no algorithm spent any cycles in
crisis.

5 Results

5.1 Iterative Approach to Determine Heat-Sink
Temperature for Reactive DTM

Table 3 shows steady-state heat-sink temperatures for the
two reactive schemes, R-Toggle and R-IwFu. For each ap-
plication, the final temperature determined by our iterative
approach is shown for different thermal limits. In addition,
the absolute difference between the final temperature and
the temperature after the second iteration of our algorithms
is shown in italics. Figure 3 shows the intermediate heat-
sink temperatures seen during the iterative process for reac-
tive algorithms. Specifically, the intermediate temperatures
seen when running R-Toggle for GSMenc is shown for the
different thermal limits.

6

App. Adapt. Thermal limit. (oC)
55 � 65 � 75 � 85 � 95 � 105 �

GSMenc Toggle 35.0 1.0 36.9 2.3 40.3 2.9 44.7 0.6 50.0 2.0 61.7 4.1
IwFu 40.9 0.3 43.0 4.5 47.0 4.3 52.4 2.4 58.9 3.4 61.9 2.3

GSMdec Toggle 36.8 1.1 40.9 0.2 43.3 3.6 47.1 0.7 49.6 0.0 49.6 0.0
IwFu 40.0 0.0 44.3 2.7 47.1 2.3 48.8 0.2 49.6 0.0 49.6 0.0

G728enc Toggle 32.9 1.0 37.3 1.9 40.1 0.1 47.3 0.0 47.3 0.0 47.3 0.0
IwFu 38.2 3.3 42.8 3.0 46.5 0.2 47.3 0.0 47.3 0.0 47.3 0.0

G728dec Toggle 34.9 2.2 40.4 0.2 43.1 5.7 49.6 0.4 50.1 0.0 50.1 0.0
IwFu 39.0 0.3 45.0 2.2 48.7 0.4 49.9 0.3 50.1 0.0 50.1 0.0

MPGenc Toggle 33.9 1.8 36.2 2.8 41.0 0.2 51.4 0.0 51.4 0.0 51.4 0.0
IwFu 40.0 0.0 42.6 1.5 48.3 0.9 51.4 0.0 51.4 0.0 51.4 0.0

MPGdec Toggle 34.7 2.2 40.8 0.4 43.9 2.8 54.2 0.0 54.2 0.0 54.2 0.0
IwFu 40.5 0.4 46.6 2.5 50.6 3.1 54.2 0.0 54.2 0.0 54.2 0.0

H263enc Toggle 33.5 2.0 37.4 2.7 39.8 0.1 47.8 1.2 48.5 0.0 48.5 0.0
IwFu 39.9 0.1 44.0 1.6 47.0 1.1 48.2 1.9 48.5 0.0 48.5 0.0

H263dec Toggle 34.1 2.1 37.7 2.8 40.7 0.2 47.8 0.3 51.0 0.0 51.0 0.0
IwFu 39.9 0.1 43.8 1.6 47.2 1.1 49.6 0.3 51.0 0.0 51.0 0.0

MP3dec Toggle 33.2 1.7 36.7 2.7 40.1 0.2 47.4 0.0 47.4 0.0 47.4 0.0
IwFu 38.5 0.9 42.2 2.1 46.1 0.5 47.4 0.0 47.4 0.0 47.4 0.0

Table 3. Steady state heat-sink temperatures for different applications for R-Toggle and R-IwFu at different thermal limits. The
absolute difference between the steady-state temperatureand the heat-sink temperature after the second iteration ofour algorithms
is also shown in italics.

Dependence on application and thermal limit:Table 3
shows that for the same reactive algorithm, the heat-sink
temperature is different for different applications and across
different thermal limits. This is because (1) different appli-
cations have different power consumption, and (2) at vari-
ous thermal limits, the magnitude of the reactive response
required is different, leading to differences in processor
power consumption.

It should be noted that for most applications, the heat-
sink temperature for R-Toggle and R-IwFu remains con-
stant above a certain thermal limit. This is because the max-
imum temperature of the application without any adaptation
is lower than that thermal limit. For any thermal limit above
this maximum temperature, no DTM response is required,
resulting in a constant heat-sink temperature. Consequently,
the final heat-sink temperature remains constant after the
second iteration of our algorithms.

Dependence on DTM algorithm:Table 3 shows that for
a given application and thermal limit, the steady-state heat-
sink temperature is different for R-IwFu and R-Toggle in
many cases. This again is due to the differing effect of
the two reactive schemes on processor power consump-
tions. As can be seen, the heat-sink temperatures for R-
IwFu are higher than the temperatures for R-Toggle (in the
cases where DTM responses are required). This is because
R-IwFu has a lower impact on total processor power and
instead targets localized hot-spots. In contrast, R-Toggle,
due to its global nature, results in a larger drop in heat-sink
temperatures.

Number of iterations:As Figure 3 illustrates, 5 to 6 iter-
ations are required to determine the correct heat-sink tem-
perature for GSMenc. Other applications show similar be-

havior. Table 3 quantifies this by showing the difference be-
tween the steady-state temperature and the second iteration
heat-sink temperature (� column). Although these differ-
ences between steady-state and second iteration heat-sink
temperatures may appear small, they translate to significant
execution time differences. For example, GSMenc sees an
average difference of 2.2 degrees for R-Toggle across all
thermal limits but the average execution time difference is
26%. Similarly, GSMenc with R-IwFu sees an average ex-
ecution time difference of 41% for an average temperature
difference of 2.9 degrees (these results are not shown in this
paper due to a lack of space). Skadron et al. noted a sim-
ilar dependence of execution times on heat sink tempera-
tures [11].

Implications: These results clearly show that using a
constant arbitrary heat-sink temperature for all simulations
can potentially lead to incorrect results. Further, in addition
to differentiating between different applications and thermal
limits (as in [11]), heat-sink temperature differences across
different adaptation algorithms should also be accounted
for. Finally, as can be seen in the� column in Table 3, two
iterations are insufficient to determine the correct heat-sink
temperature in most cases.

5.2 Reactive Algorithms

Table 4 compares the performance of the two reactive
schemes discussed in Section 3.1. For each application, the
ratio of execution times of R-IwFu to R-Toggle (R-IwFu/R-
Toggle) is shown for different thermal limits. The higher the
ratio, the better R-Toggle performs compared to R-IwFu.
As can be seen, R-Toggle performs better than or equal to

7

Figure 3. Iterative heat-sink temperatures converging to
the correct temperature for GSMenc with R-Toggle for dif-
ferent thermal limits

App. Thermal limit. (oC)
55 65 75 85 95 105

GSMenc 1.47 1.34 1.23 1.12 1.07 1.00
GSMdec 1.38 1.26 1.05 1.00 1.00 1.00
G728enc 1.05 1.04 1.01 1.00 1.00 1.00
G728dec 1.15 1.06 1.01 1.00 1.00 1.00
MPGenc 1.43 1.15 1.01 1.00 1.00 1.00
MPGdec 1.34 1.12 1.03 1.00 1.00 1.00
H263enc 1.47 1.28 1.04 1.00 1.00 1.00
H263dec 1.52 1.31 1.08 1.00 1.00 1.00
MP3dec 1.35 1.22 1.07 1.00 1.00 1.00
Average 1.35 1.20 1.06 1.01 1.01 1.00

Table 4. Reactive schemes - Ratio of execution time of
R-IwFu to R-Toggle (R-IwFu/R-Toggle) is reported.

R-IwFu for all the points in the table. At the most aggres-
sive thermal limit of55oC, the performance of the proces-
sor running R-IwFu is 1.35 times slower than R-Toggle on
average. The performance ratio between the two techniques
decreases as we move to less stringent thermal limits since
the reactive responses are invoked less frequently.

As mentioned previously, the register file is the hottest
structure on chip for all our applications. R-IwFu targets
register file power consumption by reducing the number of
active ports in the register file. However, the impact of R-
IwFu on the remaining structures on chip is limited and
small changes in the instruction window size or number of
functional units does not result in significant total processor
power reduction. As a result, large changes in instruction
window size and number of functional units are required
for sustained periods of time in order to reduce the heat-
sink temperature significantly. This subsequently resultsin
a large drop in IPC when using R-IwFu.

In contrast, although toggling does not directly target the
register file, the reduction in instructions in the pipelinere-
duces the power consumption of many structures on chip.
This leads to a larger total processor power reduction, low-
ering the heat-sink temperature. Hence, R-Toggle can
achieve the required temperature reduction with less per-

App. Thermal limit. (oC)
55 65 75 85 95 105

GSMenc 1.28 1.31 1.15 1.12 1.10 1.07
GSMdec 1.49 1.24 1.02 1.00 1.00 1.00
G728enc 1.35 1.07 1.00 1.00 1.00 1.00
G728dec 1.23 1.12 1.02 1.00 1.00 1.00
MPGenc 1.25 1.09 1.01 1.00 1.00 1.00
MPGdec 1.28 1.14 1.01 1.00 1.00 1.00
H263enc 1.34 1.19 1.03 1.00 1.00 1.00
H263dec 1.47 1.27 1.08 1.00 1.00 1.00
MP3dec 1.29 1.21 1.07 1.00 1.00 1.00
Average 1.33 1.18 1.04 1.01 1.01 1.01

Table 5. Comparison of best reactive and best predictive
scheme. Execution time ratio of R-Toggle and P-IwFuDVS
(R-Toggle/P-IwFuDVS) is reported.

App. Thermal limit. (oC)
55 65 75 85 95 105

GSMenc NA NA 1.44 1.23 1.16 1.02
GSMdec 1.93 1.73 1.38 1.00 1.00 1.00
G728enc 1.23 1.12 1.06 1.00 1.00 1.00
G728dec 1.18 1.12 1.00 1.00 1.00 1.00
MPGenc 1.23 1.34 1.04 1.00 1.00 1.00
MPGdec 1.33 1.50 1.10 1.00 1.00 1.00
H263enc NA 1.16 1.04 1.00 1.00 1.00
H263dec NA NA 1.25 1.00 1.00 1.00
MP3dec 1.52 1.31 1.08 1.00 1.00 1.00
Average 1.40 1.33 1.15 1.03 1.02 1.00

Table 6. Comparison of global vs. local techniques. Ex-
ecution time ratio of P-IwFu and P-DVS (P-IwFu/P-DVS).
A value of NA implies that P-IwFu could not choose a ther-
mally safe configuration for that thermal limit.

formance loss than R-IwFu. As a result, in this scenario,
a global adaptation technique performs better than a tech-
nique targeted at the hot-spot on chip.

5.3 Predictive Algorithms

Figure 4 shows the performance of all of our predictive
and reactive schemes for different thermal limits. The hor-
izontal axis in the graphs corresponds to the thermal limit,
and the vertical axis represents the performance in terms of
the slowdown over the base non-adaptive architecture. Note
that this is not % slowdown, but the ratio in execution times
of the DTM algorithms over the base non-adaptive architec-
ture. As the thermal constraints become stricter (from right
to left on the horizontal axis), the slowdown increases (from
bottom to top on the vertical axis). Due to the limited adap-
tation space explored, P-IwFu could not choose thermally
safe architectural configurations for some thermal limits,re-
sulting in incomplete P-IwFu lines for some applications.

Predictive vs. reactive schemes:As can be seen, P-
Toggle, P-DVS and P-IwFuDVS perform significantly bet-
ter than the predictive scheme, P-IwFu, and both reactive
schemes, R-Toggle and R-IwFu, for all the applications.
Among the predictive schemes, P-IwFuDVS always per-
forms the best. In addition, the performance of P-IwFuDVS

8

GSMenc GSMdec G728enc

G728dec H263enc H263dec

MPGenc MPGdec MP3dec

Figure 4. Predictive and reactive algorithms for all applications. The y-axis is the slowdown caused by the DTM algorithm over
the base non-adaptive architecture. The x-axis shows the thermal limit. P-IwFu could not choose a thermally safe architecture for
some thermal limits, resulting in some incomplete P-IwFu lines.

9

is very similar to P-DVS, implying that P-IwFuDVS prefers
using DVS over architectural adaptation. Also, the superior
performance of P-IwFuDVS and P-DVS over P-Toggle im-
plies that DVS is a more performance effective technique
than toggling.

Table 5 compares the best predictive scheme, P-
IwFuDVS, with the best reactive scheme, R-Toggle. For
each application, the ratio of execution times of R-Toggle to
P-IwFuDVS (R-Toggle/P-IwFuDVS) is shown for different
thermal limits. The higher the ratio, the better P-IwFuDVS
performs compared to R-Toggle. As can be seen, the best
predictive scheme always performs better than the best re-
active scheme. At the strictest thermal limit,55oC, the pro-
cessor performance with R-Toggle is 1.33 times slower than
with P-IwFuDVS, on average. P-IwFuDVS performs bet-
ter than the reactive schemes because of the use of DVS
which produces significant processor power reduction, re-
sulting in lower temperatures with a relatively low penalty
on performance. DVS is not available to reactive algorithms
due to the high time overhead involved when its invoked.
This highlights an advantage of predictive algorithms over
reactive algorithms. However, not all predictive algorithms
are better than reactive algorithms. As can be seen in Fig-
ure 4, R-Toggle performs better than P-IwFu in most scenar-
ios. Hence, for our applications, a global reactive technique
(R-Toggle) performed better than a predictive technique tar-
geted at hot-spots on chip (P-IwFu).

Global vs. local adaptation:Table 6 quantifies the dif-
ference between global and local adaptations. The ratio of
execution times of P-IwFu to P-DVS (P-IwFu/P-DVS) is
shown for different thermal limits. As in previous tables,
the higher the ratio, the better P-DVS performs compared to
P-IwFu. As can be seen, DVS performs significantly better
in all our applications. At the strictest thermal limit,55oC,
the processor running P-IwFu is 1.40 times slower than with
P-DVS on average across our applications. Similar to the
comparison of R-Toggle and R-IwFu, the global technique,
P-DVS, performs better than the hot-spot based technique,
P-IwFu, due to the total processor power reduction.

5.4 Comparison with Results from [12]

There are significant differences between the results in
the previous section and the results in [12].� Comparison of predictive and reactive schemes:All

the predictive algorithms in [12] including P-IwFu per-
formed better than the reactive algorithms. This was
attributed to the benefit of high time overhead adapta-
tions like register file resizing and DVS which result
in large power reductions in the predictive schemes.
In this paper, we see that P-Toggle, P-DVS and P-
IwFuDVS still perform significantly better than the
reactive algorithms. However, in this paper, we see

that R-Toggle outperforms P-IwFu. Although P-IwFu
uses register file resizing which is a high time over-
head adaptation, register file resizing only reduces the
power of a limited number of structures on chip (the
register file, instruction window, and functional units).
On the other hand, R-Toggle uses fetch toggling which
reduces the power consumption of many structures on
chip. This allows R-Toggle to have a larger impact on
heat-sink temperature for the same loss in IPC, making
it a more effective DTM technique.� Comparison of global and local adaptation tech-
niques: In [12], local techniques performed better than
global techniques. Specifically, reactive instruction
window and functional unit resizing incurred a smaller
performance penalty than reactive toggling, and pre-
dictive instruction window, register file, and functional
unit resizing performed better than predictive DVS. In
this paper, our results show the opposite trend. R-
Toggle with global toggling performed better than R-
IwFu, and P-DVS and P-Toggle performed better than
P-IwFu. Also, the bulk of the benefit in P-IwFuDVS
stems from DVS.

Hence, the benefit of lower total chip power on heat-
sink temperature is more beneficial than local hot-spot
temperature reduction with lower total chip power re-
duction. Among global adaptation techniques, DVS
performs better than fetch toggling in our experiments.

Given that most of the simulation methodology in this
paper and [12] is common, the differences in the results
arise mainly from the thermal models. There are some
significant differences between the thermal models in the
two papers. HotSpot, which is used in this paper, models
the effect of average processor power consumption on heat-
sink temperature. Our methodology takes care to intialize
HotSpot with the correct heat-sink temperature. In addi-
tion, HotSpot models more thermal solution components
(for e.g., heat spreader) and the impact of adjacent structure
temperatures on a structure due to tangential resistances.

In order to isolate the role of the heat-sink, we repeated
all of our experiments with a constant arbitrary heat-sink
temperature of40oC at thermal limits of55oC and65oC.
Without accounting for the role of total processor power
consumption on heat-sink temperature, we found that our
qualitative results reverted to those seen in [12]. Specifi-
cally, all of our predictive schemes including P-IwFu per-
formed better than our reactive schemes. In addition, local
techniques targeted at hot-spots (R-IwFu, P-IwFu, and P-
IwFuDVS) performed better than the corresponding global
techniques (R-Toggle, P-Toggle, and P-DVS). Hence, we
can conjecture that the bulk of the difference in the results
arises from the modeling of the heat-sink, clearly highlight-
ing the crucial role played by the heat-sink simulation in

10

DTM and processor thermal evaluations.

6 Conclusions

This paper examines the key role played by the heat-sink
in processor thermal simulations. The heat sink temperature
depends on the total power dissipated by the processor. The
thermal time constant of the heat sink, however, is much
larger than the time simulated by most architectural simula-
tions. The heat sink temperature, therefore, will not reach
steady state during the simulation and must be carefully ini-
tialized at the start of the simulation.

This paper makes two contributions. First, it proposes an
iterative method to initialize the heat sink temperature for
reactive dynamic thermal management algorithms. Second,
it revisits the results of our previous work [12] which set the
heat sink temperature to an arbitrary constant value based
on the prevalent model at that time. We show that although
the predictive DTM algorithms in [12] are still effective for
the applications and systems studied, the conclusion that lo-
cal response mechanisms targeted at hot-spots on chip are
better than global mechanisms is erroneous. Instead, our
global response mechanisms are more performance effec-
tive than localized mechanisms due to their impact on total
processor power and heat-sink temperature. These results
highlight the importance of accurate initialization of heat-
sink temperature in thermal simulations.

References

[1] S. Borkar. Design Challenges of Technology Scaling. In
IEEE Micro, July-August 1999.

[2] D. Brooks et al. Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations. InProc. of the 27th
Annual Intl. Symp. on Comp. Architecture, 2000.

[3] D. Brooks and M. Martonosi. Dynamic Thermal Manage-
ment for High-Performance Microprocessors. InProc. of
the 7th Intl. Symp. on High-Performance Comp. Architecture,
2001.

[4] S. Heo, K. Barr, and K. Asanovic. Reducing power density
through activity migration. InProc. of the Intl. Symposium
on Low Power Electronics and Design, 2003.

[5] M. Huang et al. A Framework for Dynamic Energy Effi-
ciency and Temperature Management. InProc. of the 33rd
Annual Intl. Symp. on Microarchitecture, 2000.

[6] C. J. Hughes et al. Variability in the Execution of Multime-
dia Applications and Implications for Architecture. InThe
International Symposium on Computer Architecture (ISCA),
2001.

[7] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve.
RSIM: Simulating Shared-Memory Multiprocessors with
ILP Processors.IEEE Computer, February 2002.

[8] Intel XScale Microarchitecture.
http://developer.intel.com/design/intelxscale/benchmarks.htm.

[9] M. D. Powell et al. Heat-and-Run: Leveraging SMT and
CMP to Manage Power Density Through the Operating Sys-
tem. InProc. of the 10th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, 2004.

[10] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-
Theoretic Techniques and Thermal-RC Modeling for Accu-
rate and Localized Dynamic Thermal Management. InProc.
of the 8th Intl. Symp. on High-Performance Comp. Architec-
ture, 2002.

[11] K. Skadron et al. Temperature-Aware Microarchitecture. In
Proc. of the 30th Annual Intl. Symp. on Comp. Architecture,
2003.

[12] J. Srinivasan and S. V. Adve. Predictive Dynamic Thermal
Management for Multimedia Applications. InProc. of the
2003 Intl Conf. on Supercomputing, 2003.

11

